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Abstract. In this paper, we formulate the problem of summarization of a dataset
of transactions with categorical attributes as an optimization problem involving two
objective functions - compaction gain and information loss. We propose metrics to
characterize the output of any summarization algorithm. We investigate two approaches
to address this problem. The first approach is an adaptation of clustering and the second
approach makes use of frequent itemsets from the association analysis domain. We
illustrate one application of summarization in the field of network data where we show
how our technique can be effectively used to summarize network traffic into a compact
but meaningful representation. Specifically, we evaluate our proposed algorithms on the
1998 DARPA Off-line Intrusion Detection Evaluation data and network data generated
by SKAION Corp for the ARDA information assurance program.
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1. Introduction

Summarization is a key data mining concept which involves techniques for find-
ing a compact description of a dataset. Simple summarization methods such as
tabulating the mean and standard deviations are often applied for data analy-
sis, data visualization and automated report generation. Clustering [13, 23] is
another data mining technique that is often used to summarize large datasets.
For example, centroids of document clusters derived for a collection of text doc-
uments [21] can provide a good indication of the topics being covered in the
collection. The clustering based approach is effective in domains where the fea-
tures are continuous or asymmetric binary [23, 10], and hence cluster centroids
are a meaningful description of the clusters. However, if the data has categorical
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Feature Type Possible Values
Source IP Categorical 232

Source Port Categorical 216

Destination IP Categorical 232

Destination Port Categorical 216

Protocol Categorical ≤ 10
Number of Packets Continuous 1 - ∞
Number of Bytes Continuous 1 - ∞
TCP Flags Categorical ≤ 10

Table 1. Different features for netflow data

attributes, then the standard methods for computing a cluster centroid are not
applicable and hence clustering cannot directly be applied for summarization1.
One such application is in the analysis of netflow data to detect cyber attacks.

Netflow data is a set of records that describe network traffic, where each
record has different features such as the IPs and ports involved, packets and bytes
transferred (see Table 1). An important characteristic of netflow data is that it
has a mix of categorical and continuous features. The volume of netflow data
which a network analyst has to monitor is huge. For example, on a typical day
at the University of Minnesota, more than one million flows are collected in every
10 minute window. Manual monitoring of this data is impossible and motivates
the need for data mining techniques. Anomaly detection systems [9, 17, 4, 22]
can be used to score these flows, and the analyst typically looks at only the most
anomalous flows to identify attacks or other undesirable behavior. In a typical
window of data being analyzed, there are often several hundreds or thousands of
highly ranked flows that require the analyst’s attention. But due to the limited
time available, analysts look at only the first few pages of results that cover the
top few dozen most anomalous flows. If many of these most anomalous flows can
be summarized into a small representation, then the analyst can analyze a much
larger set of anomalies than is otherwise possible. For example, Table 2 shows 17
flows which were ranked as most suspicious by the MINDS Anomaly Detection
Module [9] for the network traffic analyzed on January 26, 2003 (48 hours after
the Slammer Worm hit the Internet) for a 10 minute window that contained 1.8
million flows. These flows are involved in three anomalous activities - slammer
worm related traffic on port 1434, flows associated with a half-life game server
on port 27016 and ping scans of the inside network by an external host on
port 2048. If the dataset shown in Table 2 can be automatically summarized
into the form shown in Table 3 (the last column has been removed since all
the transactions contained the same value for it in Table 2), then the analyst
can look at only 3 lines to get a sense of what is happening in 17 flows. Table
3 shows the output summary for this dataset generated by an application of
our proposed scheme. We see that every flow is represented in the summary.
The first summary S1 represents flows {T1-T10,T14-T16} which correspond to the
slammer worm traffic coming from a single external host and targeting several
internal hosts. The second summary S2 represents flows {T12,T13} which are the

1 Traditionally, a centroid is defined as the average of the value of each attribute over all
transactions. If a categorical attribute has different values (say red, blue, green) for three
different transactions in the cluster, then it does not make sense to take an average of the
values. Although it is possible to replace a categorical attribute with an asymmetric binary
attribute for each value taken by the attribute, such methods do not work well when the
attribute can take a large number of values, as in the netflow data – see Table 1.
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Score srcIP sPort dstIP dPort prot pkts bytes
T1 37675 63.150.X.253 1161 128.101.X.29 1434 udp [0,2) [0,1829)
T2 26677 63.150.X.253 1161 160.94.X.134 1434 udp [0,2) [0,1829)
T3 24324 63.150.X.253 1161 128.101.X.185 1434 udp [0,2) [0,1829)
T4 21169 63.150.X.253 1161 160.94.X.71 1434 udp [0,2) [0,1829)
T5 19525 63.150.X.253 1161 160.94.X.19 1434 udp [0,2) [0,1829)
T6 19235 63.150.X.253 1161 160.94.X.80 1434 udp [0,2) [0,1829)
T7 17679 63.150.X.253 1161 160.94.X.220 1434 udp [0,2) [0,1829)
T8 8184 63.150.X.253 1161 128.101.X.108 1434 udp [0,2) [0,1829)
T9 7143 63.150.X.253 1161 128.101.X.223 1434 udp [0,2) [0,1829)
T10 5139 63.150.X.253 1161 128.101.X.142 1434 udp [0,2) [0,1829)
T11 4048 142.150.Y.101 0 128.101.X.142 2048 icmp [2,4) [0,1829)
T12 4008 200.250.Z.20 27016 128.101.X.116 4629 udp [2,4) [0,1829)
T13 3657 202.175.Z.237 27016 128.101.X.116 4148 udp [2,4) [0,1829)
T14 3451 63.150.X.253 1161 128.101.X.62 1434 udp [0,2) [0,1829)
T15 3328 63.150.X.253 1161 160.94.X.223 1434 udp [0,2) [0,1829)
T16 2796 63.150.X.253 1161 128.101.X.241 1434 udp [0,2) [0,1829)
T17 2694 142.150.Y.101 0 128.101.X.168 2048 icmp [2,4) [0,1829)

Table 2. Top 17 anomalous flows as scored by the anomaly detection module of the MINDS
system for the network data collected on January 26, 2003 at the University of Minnesota (48
hours after the Slammer Worm hit the Internet). The third octet of IPs is anonymized for
privacy preservation.

Size Score srcIP sPort dstIP dPort prot pkts
S1 13 15102 63.150.X.253 1161 *** 1434 udp [0,2)
S2 2 3833 *** 27016 128.101.X.116 *** udp [2,4)
S3 2 3371 142.150.Y.101 0 *** 2048 icmp [2,4)

Table 3. Summarization output for the dataset in Table 2. The last column has been removed
since all the transactions contained the same value for it in the original dataset.

connections made to half-life game servers made by an internal host. The third
summary, S3 represents flows {T11,T17} which correspond to a ping scan by the
external host. In general, such summarization has the potential to reduce the
size of the data by several orders of magnitude.

In this paper, we address the problem of summarization of data sets that have
categorical features. We view summarization as a transformation from a given
dataset to a smaller set of individual summaries with an objective of retaining
the maximum information content. A fundamental requirement is that every
data item should be represented in the summary.

1.1. Contributions

Our contributions in this paper are as follows –

– We formulate the problem of summarization of transactions that contain cate-
gorical data, as a dual-optimization problem and characterize a good summary
using two metrics – compaction gain and information loss. Compaction gain
signifies the amount of reduction done in the transformation from the actual
data to a summary. Information loss is defined as the total amount of infor-
mation missing over all original data transactions in the summary.

– We investigate two approaches to address this problem. The first approach is
an adaptation of clustering and the second approach makes use of frequent
itemsets from the association analysis domain [3].

– We present an optimal but computationally infeasible algorithm to generate
the best summary for a set of transactions in terms of the proposed metrics.
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src IP sPort dst IP dPort pro flags packets bytes
T1 12.190.84.122 32178 100.10.20.4 80 tcp —APRS- [2,20] [504,1200]
T2 88.34.224.2 51989 100.10.20.4 80 tcp —APRS- [2,20] [220,500]
T3 12.190.19.23 2234 100.10.20.4 80 tcp —APRS- [2,20] [220,500]
T4 98.198.66.23 27643 100.10.20.4 80 tcp —APRS- [2,20] [42,200]
T5 192.168.22.4 5002 100.10.20.3 21 tcp —A-RSF [2,20] [42,200]
T6 192.168.22.4 5001 100.10.20.3 21 tcp —A-RS- [40,68] [220,500]
T7 67.118.25.23 44532 100.10.20.3 21 tcp —A-RSF [40,68] [42,200]
T8 192.168.22.4 2765 100.10.20.4 113 tcp —APRS- [2,20] [504,1200]

Table 4. A synthetic dataset of network flows.

We also present a computationally feasible heuristic-based algorithm and in-
vestigate different heuristics which can be used to generate an approximately
good summary for a given set of transactions.

– We illustrate one application of summarization in the field of network data
where we show how our technique can be effectively used to summarize network
traffic into a compact but meaningful representation. Specifically, we evaluate
our proposed algorithms on the 1998 DARPA Off-line Intrusion Detection
Evaluation data [15] and network data generated by SKAION Corp for the
ARDA information assurance program [1].

2. Characterizing a Summary

Summarization can be viewed as compressing a given set of transactions into
a smaller set of patterns while retaining the maximum possible information. A
trivial summary for a set of transactions would be itself. The information loss
here is zero but there is no compaction. Another trivial summary would be
the empty set ε, which represents all the transactions. In this case the gain in
compaction is maximum but the summary has no information content. A good
summary is one which is small but still retains enough information about the
data as a whole and also for each transaction.

We are given a set of n categorical features F = {F1, F2, . . . , Fn} and an
associated weight vector W such that each Wi ∈ W represents the weight of the
feature Fi ∈ F . A set of transactions T , such that |T | = m, is defined using
these features, and each Ti ∈ T has a specific value for each of the n features.
Formally, a summary of a set of transactions can be defined as follows:

Definition 1. (Summary) A summary S of a set of transactions T , is a set of
individual summaries {S1, S2, . . . , Sl} such that (i) each Sj represents a subset
of T and (ii) every transaction Ti ∈ T is represented by at least one Sj ∈ S.

Each individual summary Sj essentially covers a set of transactions. In the sum-
mary S, these transactions are replaced by the individual summary that covers
them. As we mentioned before, computing the centroid for data with categor-
ical attributes is not possible. For such data, a feature-wise intersection of all
transactions is a more appropriate description of an individual summary. Hence,
from now on, an individual summary will be treated as a feature-wise inter-
section of all transactions covered by it, i.e., if Sj covers {T1, T2, . . . , Tk}, then
Sj =

⋂k
i=1 Ti. For the sake of illustration let us consider the sample netflow

data given in Table 4. The dataset shown is a set of 8 transactions that are
described by 6 categorical features and 2 continuous features (see Table 1). Let
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src IP sPort dst IP dPort pro flags packets bytes
S1 *.*.*.* *** 100.10.20.4 *** tcp —APRS- [2,20] ***
S2 *.*.*.* *** 100.10.20.3 21 tcp *** *** ***
S3 192.168.22.4 2765 100.10.20.4 113 tcp —APRS- [2,20] [504,1200]

Table 5. A possible summary for the dataset shown above.
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Fig. 1. ICC Curve for summarization algorithms

all the features have equal weight of 1
8 . One summary for this dataset is shown

in Table 5 as a set of 3 individual summaries. The individual summary S1 covers
transactions {T1,T2,T3,T4,T8}, S2 covers transactions {T5,T6,T7} and S3 covers
only one transaction, T8.

To assess the quality of a summary S of a set of transactions T , we define
following metrics -

Definition 2. (Compaction Gain for a Summary) Compaction Gain = m
l .

(Recall that m = |T | and l = |S|.)
For the dataset in Table 4 and the summary in Table 5, Compaction Gain for S
= 8

3 .

Definition 3. (Information Loss for a transaction represented by an
individual summary) For a given transaction Ti ∈ T and an individual sum-
mary Sj ∈ S that covers Ti, lossij =

∑n
q=1 Wq ∗ bq, where, bq = 1 if Tiq 6∈ Sj

and 0 otherwise.

The loss incurred if a transaction is represented by an individual summary will
be the weighted sum of all features that are absent in the individual summary.

Definition 4. (Best Individual Summary for a transaction) For a given
transaction Ti ∈ T , a best individual summary Sj ∈ S is the one for which lossij

is minimum.

The total information loss for a summary is the aggregate of the information lost
for every transaction with respect to its best individual summary.

For the dataset in Table 4 and its summary shown in Table 5, transactions
T1-T4 are best covered by individual summary S1 and each has an information
loss of 4

8 . Transactions T5-T7 are best covered by individual summary S2 and
each has an information loss of 5

8 . T8 is represented by S1 and S3. For T8 and
S1, information loss = 4× 1

8 = 1
2 , since there are 4 features absent in S1. For T8

and S3, information loss = 0 since there are no features absent in S3. Hence the
best individual summary for T8 will be S3. Thus, we get that Information Loss
for S = 4

8 × 4 + 5
8 × 3 + 0 = 31

8 = 3.875.
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Clustering-based Algorithm
Input: T : a transaction data set.

W : a set of weights for the features.
l: size of final summary

Output : S: the final summary.

Variables :C: clusters of T .

Method:
1. Initialize S = {}
2. Run clustering T to obtain a set of l clusters, C̄.
3. for each C̄i ∈ C̄
4. Si =

⋂m

j=1
Cij

5. endfor
6. End

Fig. 2. The Clustering-based Algorithm

It is to be noted that the characteristics, compaction gain and information
loss, follow an optimality tradeoff curve as shown in Figure 1 such that increasing
the compaction results in increase of information loss. We denote this curve as
ICC (Information-loss Compression-gain Characteristic) curve.

The ICC curve is a good indicator of the performance of a summarization
algorithm. The beginning and the end of the curve are fixed by the two trivial
solutions discussed earlier. For any summarization algorithm, it is desirable that
the area under its ICC curve be minimal. It can be observed that getting an
optimal curve as shown in Figure 1 involves searching for a solution in exponential
space and hence not feasible. But a good algorithm should be close enough to
the optimal curve like 1 and not like 2 in the figure shown.

As the ICC curve indicates, there is no global maxima for this dual-optimization
problem since it involves two orthogonal objective functions. So a typical objec-
tive of a summarization algorithm would be - for a given level of compaction find
a summary with the lowest possible information loss.

3. Summarization Using Clustering

In this section, we present a direct application of clustering to obtain a summary
for a given set of transactions with categorical attributes. This simple algorithm
involves clustering of the data using any standard clustering algorithm and then
replacing each cluster with a representation as described earlier using feature-
wise intersection of all transactions in that cluster. The weights W are used to
calculate the distance between two data transactions in the clustering algorithm.
Thus, if C̄ is a set of clusters obtained from a set of transactions T by clustering,
then each cluster produces an individual summary which is essentially the set
of feature-value pairs which are present in all transactions in that cluster. The
number of clusters here determine the compaction gain for the summary.

Figure 2 gives the clustering based algorithm. Step 2 generates l clusters,
while step 3 and 4 generate the summary description for each of the individ-
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src IP sPort dst IP dPort protocol flags packets bytes
C1 *.*.*.* *** 100.10.20.4 *** tcp —APRS- [2,20] ***
C2 *.*.*.* *** 100.10.20.3 21 tcp *** *** ***

Table 6. A summary obtained for the dataset in Table 4 using the clustering based algorithm

src IP sPort dst IP dPort protocol flags packets bytes
T9 12.190.84.122 32178 100.10.20.10 53 udp ——– [25,60] [2200,5000]

Table 7. An outlying transaction T9 added to the data set in Table 4

ual clusters. For illustration consider again the sample dataset of 8 transac-
tions in Table 4. Let clustering generate two clusters for this dataset – C1 =
{T1,T2,T3,T4,T8} and C2 = {T5,T6,T7}. Table 6 shows a summary obtained us-
ing the clustering based algorithm.

The clustering based approach works well in representing the frequent modes
of behavior in the data because they are captured well by the clusters. However,
this approach performs poorly when the data has outliers and less frequent pat-
terns. This happens because the outlying transactions are forced to belong to
some cluster. If a cluster has even a single transaction which is different from
other cluster members, it degrades the description of the cluster in the summary.
For example, let us assume that another transaction T9 as shown in Table 7 is
added to the dataset shown in Table 4 and clustering assigns it to cluster C1.

On adding T9 to C1, the summary generated from C1 will be empty. The
presence of this outlying transaction makes the summary description very lossy
in terms of information content. Thus this approach represents outliers very
poorly, which is not desirable in applications such as network intrusion detection
and fraud detection where such outliers can be of special interest.

4. An Optimal Summarization Algorithm

In this section we propose an exhaustive search algorithm (shown in Figure 3)
which is guaranteed to generate an optimal summary of given size l for a given
set of transactions, T . The first step of this algorithm involves generating the
powerset of T (= all possible subsets of T ), denoted by C . The size of C will be
2|T |. The second step involves searching all possible subsets of C (22|T | subsets)
to select a subset, S which has following properties

Property 1.

(1) |S| = l, the size of this subset is equal to desired compaction level

(2) The subset S covers all transactions in T (a set cover of T )

(3) The total information loss for S with respect to T is minimum over all other
subsets of T which satisfy the properties 1 and 2

We denote the optimal summary generated by the algorithm in Figure 3 by S .
The optimal algorithm follows the optimal ICC curve as shown in Figure 1.
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Optimal Algorithm
Input: T : a transaction data set.

W : a set of weights for each feature.
l: size of final summary

Output : S: the final summary.

Method:
1. Generate C = power set of T
2. Let current min loss = inf
3. Let S = {}
4. Foreach Ci ∈ C
5. If |Ci| = l And Information Loss for Ci < current min loss
6. current min loss = Information Loss for Ci

7. S = Ci

8. End If
9. End Foreach
10. Return S
11. End

Fig. 3. The Optimal Algorithm

5. A Two-step Approach to Summarization using
Frequent Itemsets

The optimal algorithm presented in Section 4 requires searching in a 22|T | space
(for 4 transactions it would require searching a set of 65,536 subsets), which
makes it computationally infeasible even for very small data sets. In this section
we propose a methodology which simplifies each of the two steps of the optimal
algorithm to make them computationally more efficient. We first present the fol-
lowing lemma.

Lemma 1. Any subset of T belonging to the optimal summary, S must belong
to Cc, where Cc denotes a set containing all closed frequent itemsets2 generated
with a support threshold of 2 and T itself.

Proof. This can be easily proved by contradiction. Suppose the optimal sum-
mary contains a subset Si ∈ C - Cc. Thus there will be a subset Sj ∈ Cc which
“closes” Si, which means Sj ⊃ Si and support(Si) = support(Sj). We can replace
Si with Sj in S to obtain another summary, S ′ such that all the transactions
represented by Si in S are represented by Sj in S ′. Since Sj ⊃ Si, the infor-
mation loss for these transactions will be lower in S ′. Thus S ′ will have lower
information loss than S for the same compaction which is not possible since S
is an optimal summary.

We modify the Step 1 of optimal algorithm in Figure 3 and replace C with
Cc. The result from Lemma 1 ensures that we can still obtain the optimal sum-
mary from the reduced candidate set. But to obtain an optimal solution we still

2 An itemset X is a closed itemset if there exists no proper superset X′ ⊃ X such that
support(X′) = support(X).
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need to search from the powerset of Cc, which is still computationally infeasible.
Higher values of the support threshold can be used to further prune the number
of possible candidates, but this can impact the quality of the summaries obtained.

We replace the Step 2 of optimal algorithm with a greedy search which avoids
the exponential search by greedily searching for a good solution. This does not
guarantee the optimal summary but tries to follow the optimal ICC curve (refer
to Figure 1). The output (a subset of Cc) of Step 2 of our proposed algorithms
satisfiy Property 1.1 and Property 1.2 mentioned in Section 4 but is not guar-
anteed to satisfy Property 1.3.

The selection of a subset of Cc such that its size satisfies the desired com-
paction level while the information loss associated with this subset is approxi-
mately minimal can be approached in two ways.

– The first approach works in a top-down fashion where every transaction be-
longing to T selects a “best” candidate for itself (based on a heuristic based
function which will be described in later in this section ). The union of all such
candidates is the summary for T .

– The second approach works in a bottom-up fashion by starting with T as the
initial summary and choosing a “best” candidate at every step and adding
it to the summary. The individual summaries that are covered by the chosen
candidates are replaced, thereby causing compaction.

In this paper we will discuss only the bottom-up approach for summarization.
An algorithm based on the top-down approach is presented in an extended tech-
nical report [8]. Both of these approaches build a summary in an iterative and
incremental fashion, starting from the original set of transactions T as the sum-
mary. Thus from the ICC curve perspective, they start at the left hand corner
(compaction=1,loss=0). At each iteration the compaction gain increases along
with the information loss. Each iteration makes the current summary smaller by
bringing in one or more candidates into the current summary.

6. A Bottom-up Approach to Summarization - The BUS
Algorithm

The main idea behind the BUS algorithm is to incrementally select best can-
didates from the candidate set such that at each step, for a certain gain in
compaction, minimum information loss is incurred. The definition of a “best”
candidate is based on a heuristic decision and can be defined in several different
ways as we will describe later.

Figure 4 presents a generic version of BUS. Line 1 involves generation of all
closed frequent itemsets of T . As mentioned earlier, choosing a support threshold
of 2 transactions while generating the frequent itemsets as well as the transac-
tions themselves ensures that we capture patterns of every possible size. The
rest of the algorithm works in an iterative mode until a summary of desired
compaction level l is obtained. In each iteration a candidate from Cc is chosen
using the routine select best. We have investigated several heuristic versions of
select best which will be described later. The general underlying principle for de-
signing a select best routine is to ensure that the selected candidate incurs very
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BUS Algorithm
Input: T : a transaction data set.

W : a set of weights for each feature.
l: size of final summary

Variables :Sc: current summary
Output : S: the final summary.

Method:
1. Generate Cc = {All closed frequent itemsets of T} + T
2. While (|Sc| != l)
3. Cbest = select best(Cc,Sc,T )
4. Sc = Sc - {Summaries in Sc covered by Cbest} + Cbest

5. End While
6. S = Sc

7. End

Fig. 4. The Generic BUS Algorithm

low information loss while reducing the size of summary. After choosing a best
candidate, Cbest, all individual summaries in current summary which are com-
pletely covered3 by Cbest are removed and Cbest is added to the summary (let
the new summary be denoted by S′c).

Thus after each iteration, the size of the summary, Sc is reduced by size(Cbest)
- 1, where size(Cbest) denotes the number of individual summaries in Sc com-
pletely covered by Cbest. This is denoted by gain(Ci, Sc) and represents the
compaction gain achieved by choosing candidate Ci for a given summary Sc.

For computing the loss incurred by adding Cbest to the current summary (and
replacing the summaries covered by Cbest), we need to consider the transactions
which will consider Cbest as their best individual summary (refer to Definition 4)
in the new summary. For all such transactions, the difference in the loss when
they were represented in Sc by their best individual summaries and the loss when
they are represented by Cbest in S′c is the extra loss incurred in choosing Cbest.
This is denoted by loss(Ci, Sc).

Next we describe four different ways in which function select best can be
designed. Each of these approaches make a greedy choice to choose a candidate
from the current candidate set Cc which would lead to a locally optimal solution
but does not ensure that the sequence of these choices will lead to a globally
optimal solution.

6.1. Method 1

This method (as shown in Figure 5) uses the quantities gain(Ci, Sc) and loss(Ci, Sc),
defined above, to score the candidates and choose one to be added to the cur-
rent summary, Sc. All candidates with gain(Ci, Sc) equal to or less than 1 are

3 An individual summary is completely covered by a candidate if it is more specific than the
candidate
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select best - Method 1
Input: T : a transaction data set.

Sc: current summary.
Cc: candidate set.

Output : Cbest: best candidate.
Method:
1. min-loss = minimum(loss(Ci, Sc), ∀Ci ∈ Cc & gain(Ci, Sc) > 1)
2. C′ = {Ci|Ci ∈ Cc & gain(Ci, Sc) > 1 & loss(Ci, Sc) = min-loss}
3. best = argmaxCi∈C′ (gain(Ci, Sc))
4. return Cbest

5. End

Fig. 5. select best - Method 1

ignored (since adding them to the current summary would not result in any com-
paction gain in the new summary). The remaining candidates are ordered using
loss(Ci, Sc). From among the candidates which have lowest value for loss(Ci, Sc),
the candidate with highest gain(Ci, Sc) is returned as the best candidate.

Thus this approach tries to maintain a very low information loss at each
iteration by bringing in the candidates with lowest information loss.

But as mentioned above, the decision to pick up a candidate in this manner
might eventually result in a sub-optimal solution. A simple counter-example
shown in Figure 6 proves this. Let us consider a simple data set which has four
transactions {T1,T2,T3,T4} defined over four attributes {a,b,c,d} (each attribute
has a unit weight). The aim is to obtain a summary of size 2 for this data set
using the BUS algorithm. As shown in the figure, the candidate set Cc contains
9 possible candidates. The BUS algorithm considers the transaction set, T as
the initial summary, Sc. The first iteration uses method 1 and (see Figure 7)
chooses candidate C5 as the best candidate, generating a new Sc. The candidate
set is rescored as shown in the figure. The next iteration chooses (see Figure 7)
C9 as the best candidate and reduces the size of Sc to 2. The right side table
in Figure 7 shows another size 2 summary for the same data set which has a
smaller information loss. This shows that this method to score candidates might
not result in an optimal solution.

6.2. Method 2

This method (as shown in Figure 9) also uses the quantities gain(Ci, Sc) and
loss(Ci, Sc) as in Method 1, but in a different way. All candidates with gain(Ci, Sc)
equal to or less than 1 are ignored (since adding them to the current summary
would not result in any compaction gain in the new summary). The remaining
candidates are ordered using gain(Ci, Sc). From among the candidates which
have lowest value for gain(Ci, Sc), the candidate with lowest loss(Ci, Sc) is re-
turned as the best candidate.

This method is symmetrically opposite to method 1 and makes use of the
symmetry between information loss and compaction gain. The general idea be-
hind method 2 is that at any iteration, the candidates which cover least number
of individual summaries in the current summary Sc, will also incur the lowest
possible loss. Similar to method 1, this method for choosing the best candidate
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T
T1 a1 b1 c1 d1

T2 a1 b1 c2 d2

T3 a2 b2 c2 d2

T4 a2 b3 c2 d2

Cc

size(Ci, Sc = T ) loss(Ci, Sc = T )
C1 {T1} 1 0
C2 {T2} 1 0
C3 {T3} 1 0
C4 {T4} 1 0
C5 {T1,T2} 2 4
C6 {T2,T3} 2 4
C7 {T2,T4} 2 4
C8 {T3,T4} 2 4
C9 {T2,T3,T4} 3 6

Fig. 6. Left - A simple data set, T with 4 transactions defined over 4 features. Each feature is
assumed to have a unit weight. Right - The candidate set, Cc with gain(Ci, Sc) and loss(Ci, Sc)
defined for current summary, Sc = T .

Sc

C5 a1 b1

T3 a2 b2 c2 d2

T4 a2 b3 c2 d2

Cc

size(Ci, Sc) loss(Ci, Sc)
C8 {T3,T4} 2 4
C9 {T2,T3,T4} 2 4

Fig. 7. Left - Current summary, Sc after first iteration. Right - The candidate set, Cc after
rescoring based on Sc (Showing only the candidates with gain(Ci, Sc) > 1).

Sc

C5 a1 b1

C8 c2 d2

S′c
C1 a1 b1 c1 d1

C9 c2 d2

Fig. 8. Left - Current summary, Sc after second iteration (Size = 2, Information Loss = 8).
Right - The optimal summary S′c (Size = 2, Information Loss = 6).

select best - Method 2
Input: T : a transaction data set.

Sc: current summary.
Cc: candidate set.

Output : Cbest: best candidate.
Method:
1. min-gain = minimum(gain(Ci, Sc), ∀Ci ∈ Cc & gain(Ci, Sc) > 1)
2. C′ = {Ci|Ci ∈ Cc & gain(Ci, Sc) > 1 & gain(Ci, Sc) = min-gain}
3. best = argminCi∈C′ (loss(Ci, Sc))
4. return Cbest

5. End

Fig. 9. select best - Method 2

does not guarantee a globally optimal summary. Consider the transaction data
set containing 6 transactions as shown in Figure 10. Figures 11-13 show the
working of the BUS algorithm using method 2 to obtain a summary of size 3
for this data set. Figure 13(right) shows an alternative summary S′c, which is of
same size as Sc but has a lower information loss.
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T
T1 a1 b1 c1 d1

T2 a1 b1 c2 d2

T3 a2 b2 c2 d2

T4 a3 b3 c2 d2

T5 a4 b4 c2 d2

T6 a4 b4 c3 d3

Cc

size(Ci, Sc = T ) loss(Ci, Sc = T )
C1 {T1} 1 0
C2 {T2} 1 0
C3 {T3} 1 0
C4 {T4} 1 0
C5 {T5} 1 0
C6 {T6} 1 0
C7 {T1,T2} 2 4
C8 {T2,T3} 2 4
C9 {T2,T4} 2 4
C10 {T2,T5} 2 4
C11 {T3,T4} 2 4
C12 {T3,T5} 2 4
C13 {T4,T5} 2 4
C14 {T5,T6} 2 4
C15 {T2,T3,T4} 3 6
C16 {T2,T3,T5} 3 6
C17 {T2,T4,T5} 3 6
C18 {T3,T4,T5} 3 6
C19 {T2,T3,T4,T5} 4 8

Fig. 10. Left - A simple data set, T with 6 transactions defined over 4 features. Each feature is
assumed to have a unit weight. Right - The candidate set, Cc with gain(Ci, Sc) and loss(Ci, Sc)
defined for current summary, Sc = T .

Sc

C7 a1 b1

T3 a2 b2 c2 d2

T4 a3 b3 c2 d2

T5 a4 b4 c2 d2

T6 a4 b4 c3 d3

Cc

size(Ci, Sc) loss(Ci, Sc)
C11 {T3,T4} 2 4
C12 {T3,T5} 2 4
C13 {T4,T5} 2 4
C14 {T5,T6} 2 4
C15 {T2,T3,T4} 2 4
C16 {T2,T3,T5} 2 4
C17 {T2,T4,T5} 2 4
C18 {T3,T4,T5} 3 6
C19 {T2,T3,T4,T5} 3 6

Fig. 11. Left - Current summary, Sc after first iteration. Right - The candidate set, Cc after
rescoring based on Sc (Showing only the candidates with gain(Ci, Sc) > 1).

Sc

C7 a1 b1

C11 c2 d2

T5 a4 b4 c2 d2

T6 a4 b4 c3 d3

Cc

size(Ci, Sc) loss(Ci, Sc)
C14 {T5,T6} 2 4
C18 {T3,T4,T5} 2 2
C19 {T2,T3,T4,T5} 2 2

Fig. 12. Left - Current summary, Sc after second iteration. Right - The candidate set, Cc after
rescoring based on Sc (Showing only the candidates with gain(Ci, Sc) > 1).

Sc

C7 a1 b1

C18 c2 d2

T6 a4 b4 c3 d3

S′c
T1 a1 b1 c1 d1

C19 c2 d2

T6 a4 b4 c3 d3

Fig. 13. Left - Current summary, Sc after third iteration (Size = 3, Information Loss = 10).
Right - The optimal summary S′c (Size = 3, Information Loss = 8).
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select best - Method 3
Input: T : a transaction data set.

Sc: current summary.
Cc: candidate set.
ks: scoring parameter.
δ: increment parameter for ks.

Output : Cbest: best candidate.
Method:
1. for each Ci in Cc

2. score(Ci, Sc) = ks*gain(Ci, Sc) - loss(Ci, Sc)
3. end for
4. max-score = maximum(score(Ci, Sc), ∀Ci ∈ Cc)
5. for each Ci in Cc

6. if((score(Ci, Sc) == max-score) & (gain(Ci, Sc) > 1))
7. return Cbest = Ci

8. end if
9. end for
10. ks = ks + δ
11. Goto 1
12. End

Fig. 14. select best - Method 3

6.3. Method 3

The third method to determine the best candidate makes use of a parameter
ks, which combines the two quantities gain(Ci, Sc) and loss(Ci, Sc) to obtain a
single value, denoted by score(Ci, Sc). The method is shown in Figure 14. The
first step calculates the score for each candidate using ks. The candidate with
highest score is chosen as the best candidate. Initially ks is chosen to be 0. This
favors the candidates with very small information loss. If all candidates with the
highest score have size(Ci, Sc) <= 1, then ks is incremented by a small value,
δ. This allows larger candidates to have higher score by offsetting the larger
information loss associated with them, and thus be considered for selection into
the summary.

The value of ks can be initialized to a value greater than 0, which would
result in selection of larger candidates initially. Using this method again does
not guarantee an optimal solution and depends on the initial value of ks and δ.

6.4. Method 4

Each of the above three methods require the rescoring of gain(Ci, Sc) and loss(Ci, Sc)
for each candidate after each iteration. The method 4, shown in Figure 15 does
not require these computations but makes use of the quantity feature loss(Ci)
which refers to the weighted sum of the features missing in a candidate. Note
that this quantity does not change over the iterations and hence is computed
only once. The method to determine the best candidate uses parameter ε, which
defines a upper threshold on feature loss(Ci). Only those candidates which have
feature loss(Ci) less than or equal to this threshold are considered for selection.
Out of these the candidate with largest value of gain(Ci, Sc) (>1) is selected as
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select best - Method 4
Input: T : a transaction data set.

Sc: current summary.
Cc: candidate set.
ε: loss level.
δ: increment parameter for ε.

Output : Cbest: best candidate.
Method:
1. for each Ci in Cc

2. C′ = {Ci | Ci ∈ Cc & gain(Ci, Sc) > 1) & feature loss(Ci) <= ε)}
3. end for
4. if(C′c == {})
5. ε = ε + δ
6. Goto 1
7. end if
8. best = argmaxCi∈C′ (gain(Ci, Sc))
9. return Cbest

10. End

Fig. 15. select best - Method 4

the best candidate. Initially ε is chosen as 0. Thus only candidates with 0 fea-
tures missing are considered. If all candidates which fall under ε threshold have
gain(Ci, Sc) ≤ 1, then ε is incremented by a small value, δ. This allows larger
candidates to be considered for selection into the summary.

6.5. Discussion

All the four methods discussed above select a candidate which they consider is
the best with respect to a heuristic. We presented examples for first two methods
where this choice might not always lead to a globally optimal solution. The last
two methods make use of a user defined parameter and a wrong choice of this
parameter can lead to suboptimal solutions. We have investigated each of these
approaches and evaluated them on different network data sets (described in next
section) and observed that all of them perform comparably in terms of the ICC
curve characteristics with respect to each other.

7. Experimental Evaluation And Results

In this section we present the performance of our proposed algorithms on network
data. We compare the performance of BUS with the clustering based approach
to show that it performs better in terms of achieving lower information loss for
a given degree of compaction. As we had mentioned earlier, the clustering based
algorithm captures the clusters in the data and summarizes the transactions
belonging to those clusters well. But the presence of infrequent patterns can ruin
the cluster descriptions and result in high information loss. The experimental
results presented in this section highlight this fact by choosing different data
sets which have different characteristics in terms of the natural clustering in
the data. We also illustrate the summaries obtained for different algorithms to
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Data Set Size Source Characteristics
AD1 1000 Artificially Generated Contains 5 clusters with 200 identical

transactions in each cluster
AD2 1100 Artificially Generated For each cluster in AD1 20 transac-

tions different in exactly one feature
are added

SKAION 8459 SKAION Data set, Scenario S29 Contains normal traffic belonging to
natural clusters mixed with outlying
attack traffic

DARPA 2903 DARPA Data set, 6 different attack re-
lated traffic from training week 4, day
5 data

Most of the transactions belonged to
clusters corresponding to each of the
larger attacks while some were outliers

Table 8. Description of the different datasets used for experiments.

make a qualitative comparison between them. The algorithms were implemented
in GNU-C++ and were run on the Linux platform on a 4-processor intel-i686
machine.

7.1. Input Data

We ran our experiments on four different artificial datasets as listed in Table
8. The first two data sets, AD1 and AD2 were artificially generated such that
they contained 5 clusters such that each cluster contained the same transaction
replicated 200 times. AD1 contained only these pure clusters. AD2 contained
outliers injected with respect to each of the cluster. The SKAION and DARPA
data sets were generated by DARPA [15] and SKAION corporation [1] respec-
tively, for the evaluation of intrusion detection systems. The DARPA dataset is
publicly available and has been used extensively in the data mining community
as it was used in KDD Cup 1999. The SKAION data was developed as a part
of the ARDA funded program on information assurance and is available only to
the investigators involved in the program. Both these datasets have a mixture
of normal and attack traffic. The DARPA data set was a subset of the week 4,
Friday, training data containing only attack related traffic corresponding to the
following attacks - warezclient, rootkit, ffb, ipsweep, loadmodule and multihop.

All of these datasets exhibit different characteristics in terms of data distrib-
ution. We measure the distribution of the data using the lof (local outlier factor)
score (see [6]). The distribution for lof scores for AD1 data set is shown in Figure
16(a). Since all transactions belong to one of the 5 clusters, all transactions have
a lof score of 1. Similar plot for data set AD2 in Figure 17(a) shows that some
of the transactions have a higher lof score since they are outliers with respect
to the clusters. Figure 18(a) gives the distribution of the lof (local outlier fac-
tor) score (see [6]) for the transactions in the SKAION dataset. The lof score
reflects the outlierness of a transaction with respect to its nearest neighbors.
The transactions which belong to tight clusters tend to have low lof scores while
outliers have high lof scores. For the SKAION dataset we observe that there are
a lot of transactions which have high outlier scores. The lof distribution for the
DARPA dataset in Figure 18(e) shows that most of the transactions belong to
tight clusters, and only a few transactions are outliers.
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feature name weight
Source IP 3.5

Source Port 0
Destination IP 3.5

Destination Port 2
Protocol 0.1

Time to Live(ttl) 0.1
TCP Flags 0.1

Number of Packets 0.3
Number of Bytes 0.3

Window Size 0.1

Table 9. Different features and their weights used for experiments.

7.2. Comparison of ICC curves for the clustering-based
algorithm and BUS

We ran the clustering based algorithm by first generating clusters of different
sizes using the CLUTO hierarchical clustering package [14]. For finding the sim-
ilarity between transactions, the features were weighted as per the scheme used
for evaluating the information loss incurred by a summary. We then summarized
the clusters as explained in Section 3. For BUS, we present the results using
frequent itemsets generated by the apriori algorithm with a support threshold
of 2 as the candidates. The BUS algorithm was executed using method 1 (see
Section 6.1)4. The different features in the data and the weights used are given
in Table 9. These weights reflect the typical relative importance given to the
different features by network analysts. The continuous attributes in the data
were discretized using equal depth binning technique with a fixed number of in-
tervals (= 75) and then used as categorical attributes. Figures 16(b) and 17(b)
show the ICC curves for the clustering-based algorithm and BUS on data sets
AD1 and AD2 respectively. Since AD1 contains 5 pure clusters, both schemes
show no information loss till the compaction gain is 200 (summary size = 5).
For compaction more than 200, the information loss increases sharply, since the
5 clusters were chosen to be distinct from each other. Hence no larger summary
could be found which could merge any two clusters efficiently. In the second data
set AD2, there are 100 outlying transactions. The figure shows that the perfor-
mance of the clustering based approach degrades rapidly as the compaction gain
is increased. This happens because some of the outlying transactions are forced
to belong to the natural clusters, which makes the cluster description very lossy,
and hence incurs a large information loss for all members of that cluster.

Figures 18(b) and 18(f) show the ICC curves for the clustering-based algo-
rithm and BUS on the DARPA and SKAION data sets respectively. From the
two graphs we can see that BUS performs better than the clustering-based ap-
proach. We also observe that the difference in the curves for each case reflects
the lof score distribution for each dataset. In the SKAION dataset there are a lot
of outliers which are represented poorly by the clustering-based approach while
BUS handles them better. Hence the difference in the information loss is very
high. In the DARPA dataset, most of the transactions belong to well-defined
clusters which are represented equally well by both the algorithms. Thus, the

4 The results from running BUS with other methods were also comparable with this method
and hence are not presented here.
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Fig. 16. (a). Distribution of lof scores for the AD1 data set. (b). ICC curves using the clustering
based algorithm and BUS(method 1) on artificial dataset AD1
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Fig. 17. (a). Distribution of lof scores for the AD2 data set. (b). ICC curves using the clustering
based algorithm and BUS(method 1) on artificial dataset AD2

difference in information loss for the two algorithms is not very high in this case.

To further strengthen our argument that clustering tends to ignore the infre-
quent patterns and outliers in the data, we plot the information loss for transac-
tions which have lost a lot of information in the summary. Figure 18(c) shows the
difference in the ICC curves for the transactions in the DARPA dataset which
have lost more than 70% information. The graph shows that for BUS, none of
the transactions lose more than 70% information till a compaction gain of about
220, while for the clustering based approach, there are considerable number of
transactions which are very poorly represented even for a compaction gain of
50. A similar result for the SKAION dataset in Figure 18(g) shows that BUS
generates summaries in which very few transactions have a high loss, which is
not true in the case of the clustering based approach.

Figure 18(d) shows the difference in the ICC curves for each algorithm for
the transactions which have lost less than 70% of information for the DARPA
dataset. This plot illustrates the difference in behavior of the two algorithms in
terms of summarizing the transactions which belong to some frequent pattern
in the data. The clustering based approach represents these transactions better
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Fig. 18. Figures (a) – (d) present results for the DARPA dataset, Figures (e) – (h) present
results for SKAION dataset. (a,e) Distribution of lof scores. (b,f) ICC Curve for the clustering
based algorithms and BUS. (c,g) Sum of the Information Loss for transactions that have lost
more than 70% of information. (d,h) Sum of the Information Loss for transactions that have
lost less than 70% information.

than BUS. A similar result can be seen for the SKAION dataset in Figure 18(h).

7.3. Qualitative Analysis of Summaries

In this section we illustrate the summaries obtained by running the clustering
based algorithm (see Table 10), and BUS using frequent itemsets (see Table 11)
on the DARPA dataset described above. This dataset is comprised of different
attacks launched on the internal network by several external machines. The tables
do not contain all the features due to the lack of space. However, the information
loss was computed using all the features shown in Table 9.

In the summary obtained from the clustering based approach, we observe that
S1 and S3 correspond to the icmp and udp traffic in the data. Summaries S2,
S4 and S6 represent the ftp traffic on port 20, corresponding to the warezclient,
loadmodule and ffb attacks which involve illegal ftp transfers. S5 represents traffic
on port 23 which correspond to the rootkit and multihop attacks. The rest of the
summaries, S7-S10, do not have enough information as most of the features are
missing. These cover most of the infrequent patterns and the outliers which
were ignored by the clustering algorithm. Thus we see that the clustering based
algorithm manages to bring out only the frequent patterns in the data. The
summary obtained from BUS gives a much better representation of the data.
Almost all the summaries in this case contain one of the IPs (which have high
weights), which is not true for the output of the clustering-based algorithm.
Summaries S1 and S2 represent the ffb and loadmodule attacks since they are
launched by the same source IP. The warezclient attack on port 21 is represented
by S3. The ipsweep attack, which is essentially a single external machine scanning
a lot of internal machines on different ports, is summarized in S6. S5 summarizes
the connections which correspond to internal machines which replied to this
scanner. The real advantage of this scheme can be seen if we observe summary S9
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size src IP sPort dst IP dPort proto packets bytes
S1 513 *** 0 *** 0 icmp [1,1] [28,28]
S2 51 172.16.112.50 20 *** *** tcp *** ***
S3 119 *** *** *** *** udp *** ***
S4 362 197.218.177.69 20 *** *** tcp [5,5] ***
S5 141 *** *** *** 23 tcp *** ***
S6 603 172.16.114.148 20 *** *** tcp *** ***
S7 507 *** *** *** *** tcp *** ***
S8 176 *** *** *** *** tcp *** ***
S9 249 *** *** *** *** tcp *** ***
S10 182 *** *** *** *** tcp *** ***

Table 10. A size 10 summary obtained for DARPA dataset using the clustering based algo-
rithm. Information Loss=23070.5

size src IP sPort dst IP dPort proto packets bytes
S1 279 *** *** 135.13.216.191 *** *** *** ***
S2 364 135.13.216.191 *** *** *** *** *** ***
S3 138 *** *** *** 21 tcp *** ***
S4 76 172.16.112.50 *** *** *** *** *** ***
S5 249 *** *** 197.218.177.69 *** *** *** ***
S6 1333 197.218.177.69 *** *** *** *** *** ***
S7 629 172.16.114.148 *** *** *** tcp *** ***
S8 153 *** *** *** 23 tcp *** ***
S9 1 172.16.114.50 23 207.230.54.203 1028 tcp [1,1] [41,88]
S10 5 *** 0 197.218.177.69 0 icmp [1,1] [28,28]

Table 11. A size 10 summary obtained for DARPA dataset using BUS algorithm. Information
Loss=18601.7

which is essentially a single transaction. In the data, this is the only connection
between these two machines and corresponds to the rootkit attack. The BUS
algorithm preserves this outlier even for such a small summary because there is
no other pattern which covers it without losing too much information. Similarly,
S10 represents 5 transactions which are icmp replies to an external scanner by
5 internal machines. Note that these replies were not merged with the summary
S5 but were represented as such. Thus, we see that summaries generated by BUS
algorithm represent the frequent as well as infrequent patterns in the data.

8. Related Work

Compression techniques such as zip, mp3, mpeg etc. also aim at reduction in data
size. But compression techniques are motivated by system constraints such as
processor speed, bandwidth and disk space. Compression schemes try to reduce
the size of the data for efficient storage, processing or data transfer. Summa-
rization, on the other hand, aims at providing an overview of the data, thereby
allowing an analyst to get an idea about the data without actually having to
analyze the entire data.

Many researchers have addressed the issue of finding a compact representa-
tion of frequent itemsets [2, 20, 11, 19, 7, 5]. However, their final objective is
to approximate a collection of frequent itemsets with a smaller subset, which is
different from the problem addressed in this paper, in which we try to represent
a collection of transactions with a smaller summary.

Text summarization [18] is a widely-researched topic in the research commu-
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nity, and has been addressed mostly as a natural language processing problem
which involves semantic knowledge and is different from the problem of summa-
rization of transaction data addressed in this paper. Another form of summa-
rization is addressed in [12] and [16], where the authors aim at organizing and
summarizing individual rules for better visualization while not addressing the
issue of summarizing the data.

The closest related work on summarization of categorical data sets is by Wang
and Karypis [24]. This paper proposes an algorithm (SUMMARY) to find a set
of frequent itemsets (based on a support threshold), which is called a summary-
set, for a given set of transactions. The summary-set is found by determining
the longest frequent itemset which covers a transaction, for each transaction and
then taking union of all such longest frequent itemsets. The summary-set is then
used to determine clusters for the given data set by treating each member of
the summary-set as a cluster such that all transactions which considered that
member as their longest representation belong to the same cluster. The authors
claim that the summary-set determined using the SUMMARY algorithm is a
good summary of the entire data set. Indeed this method can be viewed as one
instance of the top-down approach for computing summaries. However there are
several shortcomings associated with it as discussed below

– The summary-set does not guarantee to cover every transaction belonging to
the data set. Outlying transactions which do not match with any other trans-
action on any feature will not exist in any frequent itemset (even if the support
threshold is 2 transactions). Such transactions will not have any representa-
tive in the summary-set and will be completely lost. This would be highly
undesirable in applications where outliers are of great significance to analysts.
As mentioned in the introduction, every transaction has to have some form of
representation in the final summary. We must note that the real objective of
the summary-set algorithm (as stated in the paper) is to find clusters.

– This method does not try to explicitly trade-off compaction gain for infor-
mation loss. The compaction gain is very indirectly controlled by the support
threshold parameter. Thus to reduce the size of summary-set, the support
threshold can be increased. But this would result in more and more infrequent
transactions getting completely lost.

9. Concluding Remarks and Future Work

The two schemes presented for summarizing transaction datasets with categor-
ical attributes demonstrated their effectiveness in the context of network traffic
analysis. A variant of our proposed two-step approach is used routinely at the
University of Minnesota as a part of the MINDS system to summarize several
thousand anomalous netflows into just a few dozen summaries. This enables the
analyst to visualize the suspicious traffic in a concise manner and often leads
to the identification of attacks and other undesirable behavior that cannot be
captured using widely used intrusion detection tools such as SNORT.

The summarization techniques presented in this paper assume that all trans-
actions in the data set are equally important. In several applications, the transac-
tions might have different levels of importance. In such cases it will be desirable
for higher ranked transactions to incur low information loss while lower ranked
transactions can tolerate a little higher information loss.
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A typical example can be found in network anomaly detection domain where
the network flows are ranked based on their anomaly scores. The main challenge
that arises in adapting our proposed summarization techniques to this problem
is how to incorporate the knowledge of ranks while scoring the candidates to
achieve the above stated objective. We are currently investigating a few possible
approaches in this direction.
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